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transverse motions of chain molecules are taken into ac-
count, should be mentioned [14–16]. Moreover, in someA simple numerical method for seeking solitary wave solutions

of a permanent profile in molecular systems of big complexity is cases the transverse displacements of molecules are consid-
presented. The method is essentially based on the minimization of ered as the most important motions in biophysical pro-
a finite-dimensional function which is chosen under an appropriate cesses. Thus, in the DNA molecule, the stretching of thediscretization of time derivatives in equations of motion. In the

base-pairs in the transverse direction determines the funda-present paper, it is applied to a zig-zag chain backbone of coupled
particles, each of which has two degrees of freedom (longitudinal mental mechanism of the denaturation of this molecule.
and transverse). Both topological and nontopological soliton solu- The Peyrard–Bishop model of DNA melting [17–19] has
tions are treated for this chain when it is (i) subjected to a two- just been formulated in terms of only transverse motions of
dimensional periodic substrate potential or (ii) considered as an

the two complementary strands. In some cases, nonlinearisolated object, respectively. In the first case, which may be consid-
dynamical processes can be modelled by 1D two-sublatticeered as a zig-zag generalization of the Frenkel–Kontorova chain

model, two types of kink solutions with different topological models [20–23] and described by coupled lattice fields. As
charges, describing vacancies of one or two atoms (I- or II-kinks) a rule, in these cases as well as in many other situations,
and defects with excess one or two atoms in the chain (I- or II- it is quite difficult to treat analytically solitary wave solu-antikinks), have been found. The second case (isolated chain) is a

tions of equations of motion. Therefore, this particulargeneralization of the well-known Fermi–Pasta–Ulam chain model,
which takes into account transverse degrees of freedom of the chain type of solutions should be found by means of specific
molecules. Two types of stable nontopological soliton solutions numerical methods. To this end, Eilbeck and Flesch [24]
which describe either (i) a supersonic solitary wave of longitudinal suggested a pseudo-spectral method which afterwards was
stretching accompanied by transverse slendering or (ii) supersonic

developed and applied to the whole variety of nonlinearpulses of longitudinal compression propagating together with local-
dynamical systems [25]. However, in some cases, e.g., forized transverse thickening (bulge) have been obtained. Q 1997 Aca-

demic Press sufficiently smooth solitary wave solutions, it is more effi-
cient to avoid the spectral expansions and therefore to
simplify essentially the numerical procedure.

1. INTRODUCTION In this contribution we will deal with a numerical method
of looking for solitary wave solutions in an anharmonicConsiderable progress has been made in understanding
atomic (molecular) chain in which the particles are allowedthe wave mechanical properties of one-dimensional (1D)
to move in both the longitudinal and transverse directions.lattice models (see, e.g., the recent book [1] and some
Such as 2D molecular chain is supposed to have somepioneering works such as Refs. [2–7]), including also their
regular structure when it is found in an undistortedapplications to describe the charge and energy transport
(ground) state. Such a requirement immediately leads within condensed matter physics [8] and biology [9–11]. How-
necessarity to the existence of some secondary structureever, in real physical systems, even in quasi-1D chains (e.g.,
and this is really the case in biology for many macromole-biomolecules), besides the longitudinal direction, atoms
cules (DNA, protein, etc.). Geometrically, the secondary(molecules or groups of atoms) can also move in one or
structure is realized in the form of a helix. For simplicity, wetwo perpendicular directions and therefore the studies of
consider in the present paper only one transverse degree ofchain models with transverse degrees of freedom are of
freedom. As a result, the 3D helical structure is essentiallygreat interest. Thus, it was discovered that the solitonic
simplified, transforming into the ‘‘2D helix’’ which isexcitations in 1D nonlinear lattices are extremely sensitive
merely a planar zig-zag chain. Then the primary and sec-to their transverse perturbations [12, 13] and a series of

studies on soliton propagation in nonlinear lattices, when ondary structures are provided by the first- and second-
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neighbor intermolecular interactions, respectively. Such a we start with this system and then we improve the
discretization procedure in order to apply it to an isolatedsystem can be considered as the simplest theoretical model

of an isolated molecular chain and it corresponds to the zig-zag chain.
The paper is organized as follows. In Section 2, we de-realistic situation in biomolecular sciences. In fact, the zig-

zag backbone studied in the present paper is the most scribe the planar zig-zag model with the first- and second-
neighbor interactions and construct a 2D substrate poten-simple generalization of the well-known Fermi–Pasta–

Ulam chain model [2] that includes transverse degrees of tial. In this section, we derive the basic equations of motion
which have the difference-differential form. In Section 3,freedom of its particles.

It should be emphasized that the important point of the we find numerically two-component kink solutions that
describe two types of topological defects. The kink dynam-zig-zag model is the secondary structure, i.e., the second-

neighbor interactions. Even in the 1D chain, the introduc- ics including different collisions of the defects is also stud-
ied by numerical simulations. In Section 4, we improve thetion of the second-neighbor interactions crucially changes

the dynamics of the system [26, 27]. Therefore the zig-zag numerical method used in the previous section and find
nontopological soliton solutions for an isolated zig-zagstructure with the first- and second-neighbor interactions

which may be referred to as valence and hydrogen bonds, chain. The dynamics of these solitons is also studied there.
Finally, a discussion in Section 5 concludes the paper.respectively, essentially sophisticate the theory. Note that

even if the molecules are assumed to be coupled by har-
monic forces, an effective anharmonicity appears because 2. A ZIG-ZAG CHAIN MODEL AND A 2D
of the geometry of the system. For breather-like solutions, SUBSTRATE POTENTIAL
the effects of such a ‘‘geometric’’ nonlinearity have pre-

Let particles (atoms, molecules or groups of atoms) beviously beeen investigated by Cadet [28].
linked together in a 2D zig-zag chain, as illustrated in Fig.On the other hand, when this zig-zag chain is subjected
1, by the first- and second-neighbor forces with the stiffnessto a 2D periodic (in the longitudinal direction) substrate
constants K1 and K2, respectively. The chain backbone,potential, then we obtain the zig-zag generalization of
with the lattice spacing l, is directed along the X axis andthe well-known Frenkel–Kontorova (FK) model [29]
it can be considered as consisting of two coupled linearwhich was originally introduced in the theory of disloca-
chains. Let the molecules of this backbone be situated attions in solids to describe the simplest situation when a
the sites X 5 nl, with the integers n 5 0, 6 1, . . . for onechain of atoms in crystal is assumed to contain a disloca-
of these chains and with the half-integers n 5 6As, 6 Ds, . . .tion while its crystal environment is modelled by a
for the other chain (see Fig. 1). The molecules are allowedperiodic 1D substrate potential. One of the generalized
to move in the XY plane, so that they have two degreesversions of the 1D FK model which takes into account
of freedom, namely, the longitudinal (xn) and transversetransverse degrees of freedom is the Braun–Kivshar (BK)
(yn) displacements from the equilibrium positions, i.e.,model [30, 31]. This model has been suggested to describe
from the vertices of the regular (undistorted) zig-zag struc-the dynamics of a chain of atoms interacting via a
ture. As shown in Fig. 1, the dimensionless parameter hrepulsion potential and subjected to a 2D substrate
describes the geometry of the chain, namely the thicknesspotential which is periodic in the longitudinal direction
of the zig-zag backbone (given in units of the lattice spacingand parabolic in the transverse direction. Compared to
l). Then the equilibrium distance between each pair of thethis version, we assume the 2D substrate potential to
first neighbors is determined by the dimensionless parame-have the commensurate zig-zag relief, so that its global
ter b 5 (h2 1 Af)1/2.degenerate minima exactly coincide with the vertices of

the zig-zag structure. Then a certain zig-zag-like ‘‘chan-
nel’’ appears in this 2D potential relief, along which the
global minima and the barriers having a saddle form,
alternate in the longitudinal direction. This modified
generalization of the FK model describes the situation
when quasi-1D molecule crystals are formed by parallel
zig-zag molecular chains. The zig-zag substrate relief
gives rise to the existence of topological soliton (kink
and antikink) solutions with properties which differ from
those in both the FK and BK models. At least, two
types of these solutions which have differing topological
charges can be treated exactly by using the numerical
techniques developed in the present paper. Since the

FIG. 1. Schematic representation of the zig-zag chain with h 5 As.numerical method is easier for the case with substrate,
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so that

­2

­u2 Z(u, v)uu50,v50 5
­2

­v2 Z(u, v)uu50,v50 5 V2
0 , (4)

as is required. It follows from the representation (3) that
f(u) and g(u) may be referred to as ‘‘barrier’’ and ‘‘chan-
nel’’ functions, respectively.

The total Hamiltonian of the planar zig-zag system with
the substrate potential described above is

H 5 O
n
H1

2
M(ẋ 2

n 1 ẏ2
n) 1 Kl 2[U(rn) 1 V(qn)]

(5)

FIG. 2. The 2D potential relief given by the function (3) with h 5 As. 1 «0Z(un, vn)J,

where M is mass of the chain particles, K is the characteris-
The described zig-zag chain is supposed to be an isolated tic stiffness constant, and the dot denotes the differentia-

object, on one side, and it can be subjected to a 2D on- tion with respect to time t. The dimensionless intermolecu-
site potential with a zig-zag relief Z(u, v) shown in Fig. 2, lar potentials U(r) and V(q) describe the primary (between
on the other side, In the latter case, the global degenerate the nearest neighbors) and secondary (between the second
minima of this potential are assumed to coincide exactly neighbors) interactions, respectively. According to Fig. 1,
with the vertices of the undistorted chain (the commensu- the deviations from the equilibrium lengths are defined by
rate case). In other words, when the chain particles are
situated at the vertices of the zig-zag structure, then the

rn 5 FS1
2

1
xn11 2 xn

l D2

1 Sh 2
yn 1 yn11

l D2G1/2

2 b,

(6)
intermolecular bonds are undistorted and such a configu-
ration forms one of the degenerate ground states of the
system.

qn 5 FS1 1
xn11 2 xn21

l D2

1 Syn11 2 yn21

l D2G1/2

2 1.The 2D on-site (substrate) potential Z(u, v) with a zig-
zag relief can be constructed by using a pair of two periodic
functions f(u) and g(u) of the dimensionless longitudinal The potentials U(r) and V(q) are normalized by U(0) 5
coordinate u 5 X/l with the following properties of period- 0 5 V(0) and U0(0) 5 k1, V 0(0) 5 k2 with k1 5 K1/K, and
icity: k2 5 K2/K being the dimensionless stiffness constants of

the first- and second-neighbor forces, respectively. The
f(u 1 As) 5 f(u), g(u 1 1) 5 g(u). (1) parameter «0 describes the height of the barriers in the

potential Z(u, v).
Both these functions are normalized according to the ine- For the dimensionless description it is convenient to
qualities 0 # f # 1 and 0 # g # h and they are relatively introduce the normalized time t and to rescale the spatial
shifted along the X axis with respect to each other in such variable xn and yn as
a way that f(n/2) 5 0, g(n) 5 0 and f(n 6 Af) 5 1,
g(n 1 As) 5 h for all n 5 0, 6 1, . . . . In particular, for t 5 (K/M)1/2t, un(t) 5 xn(t)/l, vn(t) 5 yn (t)/l. (7)
computations we use the following explicit forms:

Then the dimensionless Lagrangian which corresponds to
f(u) 5 sin2(2fu), g(u) 5 h sin2(fu). (2) the Hamiltonian (5) takes the form

Let f 0(n/2) 5 V2
0 , where V0 is the dimensionless charac-

L 5 L Hdun

dt
, un;

dvn

dt
, vnJteristic frequency of small-amplitude oscillations of the

chain particles at the minima of the 2D substrate potential
Z(u, v) and the primes mean the differentiation. Then the

5 O
n
H1

2 FSdun

dt
D2

1 Sdvn

dt
D2G (8)potential Z(u, v) with the frequency V0 can be represented

in the form

2 U(rn ) 2 V(qn) 2 nZ(un , vn )J,
Z(u, v) 5 f(u) 1 As V2

0[v 2 g(u)]2, (3)
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where n 5 «0/Kl 2. When the zig-zag chain is considered profile of the lattice fields un(t) and vn(t) obtained under
the simulations at sufficiently large times t allows us toas an isolated object, then n 5 0, and we put n 5 1 in the

case if the chain is subjected to the substrate potential Z(u, conclude whether or not the initial condition found by the
minimization procedure is a stable solution of Eqs. (9).v). Both of these cases will be treated separately. Since

the case with . 0 is easier than the situation without the
3.1. Discretization of the Time Derivativessubstrate (n 5 0), we start with the former case.

The main point in our numerical approach is an appro-
3. THE ZIG-ZAG CHAIN IN A COMMENSURATE priate choice of a discrete functional for a minimization

SUBSTRATE POTENTIAL procedure. Such a functional can be constructed from the
corresponding Lagrangian of the system by replacing the

We consider in this section the simplest case when both time derivatives dun/dt and dvn/dt by appropriate spatial
of the intersite interactions U(r) and V(q) are given by differences of these lattice fields. Such a replacing proce-
harmonic forces. However, it should be emphasized that dure can be applied to those lattice functions which (i) are
the chain still contains an anharmonicity due to the zig- sufficiently smooth from site to site and (ii) have a station-
zag geometry. This kind of anharmonicity is referred to as ary profile moving with some velocity, s, so that we can
geometric nonlinearity. In this case, we will be dealing with write un(t) 5 u(n 2 st) and vn 5 v(n 2 st). Clearly, in
topological solitons which are formed due to the presence the case of standing (s 5 0) profiles, since the time deriva-
of the substrate potential Z(u, v), but not the intersite tives are absent, the fields un and vn are not required to
anharmonicity. The intersite anharmonicity including the be smooth functions on the lattice.
geometric nonlinearity will only change some of the prop- For seeking topological soliton solutions which exist only
erties of the kinks (and antikinks) considered below. in the case with the substrate potential Z(u, v), it is suffi-
Hence, in the Hamiltonian (5) we put U(r) 5 r2/2 and cient to adopt the most simple spatial discretization as
V(q) 5 q2/2 and then the corresponding (dimensionless)
Euler–Lagrange equations of motion take the form (n 5 1) dun

dt
5 2su9(n 2 st) Q 2s(un11 2 un21),

(10)d 2un

dt 2 5 k1Fun11 2 2un 1 un21 dvn

dt
5 2sv9(n 2 st) Q 2s(vn11 2 vn21).

2S1/2 1 un11 2 un

1 1 rn/b
2

1/2 1 un 2 un21

1 1 rn21/b DG Note that the dimensionless distance between the (n
2 1)th and (n 1 1)th lattice sites is 1. Then substituting
these approximate relations into the Lagrangian (8), we

1 k2Fun12 2 2un 1 un22 2S1 1 un12 2 un

1 1 qn11
obtain the finite-dimensional function

2
1 1 un 2 un22

1 1 qn21
DG2

­

­un
Z(un, vn),

(9)
L 5 L(u1, . . . , uN; v1, . . . , vN ) 5 ON

n51
F1

2
s2(un11 2 un21)2

(11)
d 2vn

dt 2 5 k1F2h 2 vn21 2 2vn 2 vn11 1
1
2

s2(vn11 2 vn21)2 2
1
2

k1r 2
n 2

1
2

k2q2
n 2 Z(un , vn )G,

2Sh 2 vn21 2 vn

1 1 rn21/b
1

h 2 vn 2 vn11

1 1 rn/b DG where N is the number of the chain particles. This discrete
Lagrangian can be studied for extremum points, for in-
stance, by using the steepest descent method. Obviously,

1 k2Fvn12 2 2vn 1 vn22 2Svn12 2 vn

1 1 qn11
2

vn 2 vn22

1 1 qn21
DG the extremum conditions ­L/­un 5 0 and ­L/­vn 5 0 imme-

diately yield the difference equations which can be ob-
tained from Eqs. (9) by the substitution of the second-

2
­

­vn
Z(un, vn).

order time derivatives, d 2un/dt 2 and d 2vn/dt 2 by the
second-order spatial difference derivatives 4s2(un12 2
2un 1 un22) and 4s2(vn12 2 2vn 1 vn22), respectively.Below these equations will be studied numerically and in

order to find their solitary wave solutions we will develop
3.2. Two-Component Topological Solitons

a minimization scheme. When these solutions have been
found, they can be chosen as initial conditions for numeri- To find soliton solutions by minimization of the Lagran-

gian function (11), we need to specify appropriate bound-cal simulations of the equations of motion (9). Then a final
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ary conditions. Since the zig-zag chain is subjected to the
commensurate substrate potential, we expect to obtain
topological soliton (kink) solutions. We look for the solu-
tions that have the topological charges Q 5 71, 72 where
the upper (lower) signs correspond to kinks (antikinks).
The kink solutions describe a vacancy of one (I-kink,
Q 5 21) or two (II-kink, Q 5 22) particles, whereas the
antikink solutions correspond to excess one (I-antikink,
Q 5 1) or two (II-antikink, Q 5 2) particles in the chain.
Then the corresponding boundary conditions at the chain
ends have the form

u1 5 0, uN 5 1/2, v1 5 0, vN 5 h (I-kink), Q 5 21;

u1 5 1/2, uN 5 0, v1 5 h, vN 5 0 (I-antikink), Q 5 1;
(12)

u1 5 0, uN 5 1, v1 5 vN 5 h (II-kink), Q 5 22;

u1 5 1, uN 5 0, v1 5 vN 5 0 (II-antikink), Q 5 2.

Now we can give the formulation of minimization problem
for the function (11) as

L(u1, . . . , uN ; v1, . . . , vN) R min
u2,...,uN21; v1,...,vN21

(13)

with the boundary conditions (12) to be fixed under the
minimization process. Since we are interested only in soli-
ton solutions, at a given value of the velocity s . 0, only
those points in the 2N-dimensional space are chosen as
solutions of the minimization problem which give (i) local-
ized and (ii) smooth profiles on the lattice. Nonsmooth
profiles are considered only if s 5 0, when the approximate FIG. 3. The standing two-component kink (Q 5 21) profile (E 5

9.1 and D 5 7.0) found by the minimization of the function (11): (a)substitution (10) is absent and therefore the minimization
longitudinal (un) displacements; (b) transverse (vn) displacements; and(13) yields exact standing solutions. Therefore, for all
(c) the corresponding deformation of the zig-zag chain.s . 0 localized broad profiles obtained under the minimiza-

tion process (13) can be accepted in our scheme as appro-
priate soliton solutions. Other profiles which contain, for
instance, oscillating tails, are excluded from the further

E 5 E(s) 5 O
n
F1

2
s2 (un11 2 un21)2

consideration.
To describe two-component profiles which are found

only numerically, it is convenient to define the soliton width 1
1
2

s2(vn11 2 vn21)2 (16)

D 5 2 FO
n

(n 2 Nc)2(un11 2 un)/(uN 2 u1)G1/2

(14) 1
1
2

k1r 2
n 1

1
2

k2q 2
n 1 Z(un, vn)G

which also depends on the velocity s. The results of thewhich depends on the kink velocity s and where
solution of the minimization problem (13) are particularly
presented in Figs. 3 and 4, where the I- and II-kink profiles
are plotted. At the same parameter values, the profilesNc 5

1
2

1 O
n

un11 2 un

uN 2 u1
(15)

describing the topological defects with the negative charges
Q 5 21 and Q 5 22, respectively, are much broader than
the profiles corresponding to the positive defects (Q 5 1,is the center of the defect. Another quantity which is useful

to describe a soliton solution is the kink energy 2). Thus, for instance, if k1 5 1000, k2 5 100 and V2
0 5 20,
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and found that, in general, the kink width D(s) is a mono-
tonically decreasing function while the energy E(s) in-
creases with the growth of s. However, with the system
parameters k1 5 1000, k2 5 100, and V2

0 5 20, these depend-
encies in the corresponding segments of admissible values
of the velocity s are practically negligible. In order to get
a more visible velocity dependence, we have strengthened
the stiffness constants k1 and k2 and lowered the height of
the substrate potential barrier. Thus, in Fig. 5 we have
plotted the width dependence for the parameter values
k1 5 10000, k2 5 1000, and V2

0 5 10. In this case, the
interval of admissible velocities of the kink with the charge
Q 5 22 is longer: 0 # s # 6.9. Again, as illustrated by
Fig. 5, we have only broad solitons (e.g., D 5 33.6 at s 5
5) for all admissible velocities (even including the vicinity
of the critical velocity s 5 6.9). All these results clearly
show that the absence of soliton solutions with higher ve-
locities is not caused by the discreteness of the system.
Such an abrupt disappearance of the kink solutions above
a certain value of the velocity s can be explained by the
presence of two types of interatomic couplings and by the
system geometry.

Since the numerical procedure for seeking soliton solu-
tions is based on the approximation (10) resulting in the
Lagrangian function (11) and it is valid only for sufficiently
broad soliton solutions, one could expect that in the case
of a better spatial discretization it would be possible to
treat narrower solutions. To this end, we improved the
numerical scheme by taking into account the lattice dis-
creteness. More precisely, in the approximation of the sec-
ond-order time derivatives d2un/dt 2 and d2vn/dt 2 by spatial
difference derivatives (applied to the equations of motionFIG. 4. The same for the standing II-kink profile with Q 5 22
(9)), the fourth-order derivatives 2(s2/3)(un12 2 4un11 1(E 5 19.8 and D 5 11.3).
6un 2 4un21 1 un22) and 2(s2/3)(vn12 2 4vn11 1 6vn 4vn21

1 vn22) were added to the second-order derivatives 4s2(un12

2 2un 1 un22) and 4s2(vn12 2 2vn 1 vn22), respectively.the standing (s 5 0) kink with the charge Q 5 21 has the
width equal to seven lattice sites (D 5 7.0) and the kink In this way, summing all these spatial difference terms

expanded up to the fourth order yields exactly the contin-width for Q 5 22 is D 5 11.3. For the antikinks with
Q 5 1, we have D 5 2.6 while for the second type (Q 5 uum terms s2u0 and s2v0. However, with this improved

discretization, we obtained exactly the same soliton profiles2) the width is D 5 2.8. Since the positive defects (antikinks
with Q 5 1, 2) are very narrow objects, they form the as in the case of the function (11), but one should notice
pinned states which cannot propagate freely along the
chain. As for the moving kink solutions, we have found
the intervals of the velocity s, for which the soliton solutions
obtained by the minimization process (13) exist. Thus, we
have found that the function (11) reaches its minimum
only if the kink velocity belongs to the segments 0 # s #
0.343 if Q 5 21 and 0 # s # 2.352 if Q 5 22. Outside
these segments, there are no minima corresponding to
localized smooth profiles.

The substitution of the solutions obtained by the minimi-
zation into Eqs. (14) and (16) allows us to describe the
dependence of the energy and width of both the types of FIG. 5. Dependence of the kink width D on its velocity s for the

parameter values: k1 5 10000; k2 5 1000; V2
0 5 10.kinks on their velocity s. We have examined this behavior
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that these profiles (whtn they exist for s . 0) were always
sufficiently broad. Narrow solutions were obtained only in
the case of standing (pinned to the lattice) solitons and
therefore in this particular case (s 5 0), the soliton solutions
are found exactly without any approximation. However,
as it will be shown below in the case of an isolated chain,
when very narrow solitons can propagate, such an im-
proved discretization plays the key role in our numerical
procedure.

3.3. Dynamics of the Topological Solitons
and Their Stability

The numerical solution of the minimization problem in
the case of realistic parameter values (e.g., for k1 5 1000
and k2 5 100) has shown that only the kink solutions
which correspond to stretching deformation (with negative
topological charge Q), as was mentioned above, have suf-
ficiently extended profile. Using these solutions as initial
conditions for simulations of the equations of motion (9),
the stability of their profile and velocity has been examined.
Thus, we have found that the defects with Q 5 21 can
propagate freely with velocities in the interval 0 # s #
0.343. At higher velocities, the motion of any initially pre-
pared kink-like profile, close to that from this interval, was
shown to be accompanied by emission of small-amplitude
waves and by gradual decreasing velocity to this value. FIG. 6. Elastic collision of the moving (s 5 0.343) defect with Q 5

21 (I-kink) with the standing defect with Q 5 22 (II-kink).Afterwards, the kink propagation becomes stable. The
same is true for the kinks with the charge Q 5 22. The
velocity spectrum for these kinds was found to be 0 #
s # 2.352. Note that the emission of small-amplitude waves processes of recharging and annihilation of defects with
appears due to the nonexistence of the kink solutions out- differing topological charges have also been studied. For
side the interval of admissible velocities. instance, the dynamics of creation of the defects with the

The results of the minimization procedure have also charges Q 5 71 (I-kink and I-antikink) as a result of
proved that the energy of a II-kink exceeds the energy head-in collisions of the positive and negative defects with
of two I-kinks, i.e., E22 . 2E21 (according to Eq. (16)). different charges Q has been observed.
Therefore a pair of I-kinks should be a more favorable
state than the corresponding II-kink state with the same 4. THE ZIG-ZAG CHAIN ISOLATED
velocity s. However, the simulations of the dynamical equa-
tions (9) have shown that the II-kink is stable and it does As was mentioned above, the case n 5 0 corresponds

to the situation when the zig-zag chain is considered as annot decay into two separate I-kinks. On the other hand,
for the positive defects (antikinks with Q 5 1, 2) which isolated object. In this case, the existence of nontopological

solitons is expected due to intersite anharmonicity. There-are narrow and pinned states, the situation is opposite. In
this case, E12 , 2E11 and therefore the defect with Q 5 fore, in this section, the functions U(r) and V(q) should

be considered of a general form. It follows from the form2 is more energetically favorable than two separate defects
with Q 5 1. of the deviations rn and qn defined by Eqs. (6) that the

dynamical equations which correspond to the HamiltonianWe have performed a series of numerical experiments
on head-in collisions between both the types of topological (5) or to the Lagrangian (8) can be rewritten in terms of

the new lattice fieldsdefects. Some of these results are presented in Figs. 6–8.
Thus, Fig. 6 demonstrates the elastic interaction of the I-
kinks (vacancies) of the same topological charge Q 5 21 rn 5 un11 2 un, hn 5 vn 1 vn11. (17)
and Fig. 7 illustrates the interaction between the II-kinks
of the same charge Q 5 2. The elastic collision between the Indeed, keeping the same notations for the deviations rn(t)

and qn(t) defined as functions of t, we havenegative I- and II-defects is shown in Fig. 8. The dynamical
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have been introduced. Such a canonical representation of
the equations of motion is convenient for numerical studies
of localized solutions for which the relative displacement
field rn(t) very fast decreases to zero at infinity.

4.1. The Discretization Scheme Improved

To find nontopological soliton solutions, the formation
of which is due to the lattice discreteness effects, we need
to improve the numerical scheme used in the previous
section for seeking topological soliton solutions. For this
purpose, the approximation defined by Eqs. (10) is too
crude because it does not take into account the effects of
the lattice dispersion of longuitudinal waves. In order to
improve the discretization version of the second time de-
rivative in Eq. (19), the approximation of the function
r0(n 2 st) has to contain also the fourth-order spatial
derivative with an appropriate coefficient chosen in such
a way that fourth-order derivative terms vanish in the con-
tinuum limit. More precisely, we write this improved dis-
cretization version as

FIG. 7. Elastic reflection of the moving defect with Q 5 22 (II-kink)
from the standing defect of the same charge (II-kink).

rn 5 Ï(As 1 rn)2 1 (h 2 hn)2 2 b,
(18)

qn 5 Ï(1 1 rn21 1 rn)2 1 (hn 2 hn21)2 2 1.

Then the equations of motion, which correspond to the
Lagrangian (8) with n 5 0, take the form

d 2rn

dt 2 5 Pn11 2 2Pn 1 Pn21 1 Qn12 2 Qn11 2 Qn 1 Qn21,

(19)

d2hn

dt 2 5 2(Sn21 1 2Sn 1 Sn11) 1 Tn11 2 Tn21 1 Tn12 2 Tn,

(20)

where the abbreviations

Pn 5
­

­rn
U(rn), Qn 5

­

­rn
V(qn),

(21)

FIG. 8. Elastic reflection of the moving (s 5 0.5) defect with chargeSn 5
­

­hn
U(rn), Tn 5

­

­hn
V(qn)

Q 5 22 from the pinned defect with charge Q 5 21.
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mum points, which correspond to the supersonic solitond2rn

dt 2 Q 4s2[rn11 2 2rn 1 rn21 (22) solutions, are only of the saddle-type, and therefore, it is
impossible to find any supersonic solution by minimization

2 c(rn12 2 4rn11 1 6rn 2 4rn21 1 rn22)], of the function (26). However, in this case we can imple-
ment a reflection of the Lagrangian surface in such a way

where the constant c is to be determined from the condition that saddle points are transformed into minimum points
that the r.h.s. of this equation has to be equal to s2r0 if all at this deformed surface. The most direct and simple way
its terms are expanded to include the fourth-order terms. is to construct the new functional
In other words, the last group of terms in Eq. (22) which
is the fourth-order difference derivative has been intro-
duced to cancel the corresponding fourth-order continuum F 5 F hrn, vnj 5

1
2 On FS­L

­rn
D2

1 S­L

­vn
D2G (27)

derivative appearing from the first group in Eq. (22). As
a result, we find c 5 asA and therefore the set of Eqs. (19)
and (20) is replaced by the difference equations and then to study it for minima. Those minima which

correspond to bell-shaped profiles are chosen as appro-
priate solitary wave solutions of our problem. Other min-4s2[rn11 2 2rn 1 rn21 2 asA (rn12 2 4rn11 1 6rn 2 4rn21 1 rn22)]
ima describing bell-shaped configurations accompanied by

5 Pn11 2 2Pn 1 Pn21 1 Qn12 2 Qn11 2 Qn 1 Qn21, (23)
any ripples, etc., are excluded from the further consider-
ation.4s2(hn11 2 2hn 1 hn21)

5 2(Sn21 1 2Sn 1 Sn11) 1 Tn11 2 Tn21 1 Tn12 2 Tn. (24)
4.2. Two-Component Nontopological Solitons

and Their Stability
Notice that the last equation could also be discretized in

The presence of an interparticle anharmonicity in a stan-the same way as Eq. (23) in order to take into account the
dard isolated 1D chain is a necessary condition for thelattice dispersion of transverse vibrations. However, this
existence of solitons. For simplicity, we restrict ourselvesdispersion is not responsible for the formation of solitons
here by a cubic anharmonicity. Hence, the potentials U(r)and therefore it is not necessary to use this more compli-
and V(q) are chosen in the following simplest form:cated discretized version. In fact, we have compared the

results of the minimization with both the second- and
fourth-order discrete approximations of the function v(n

U(r) 5 k1 S1
2

r 2 2
a
3

r 3D,

(28)
2 st), based on Eq. (24) and its fourth-order analogous
equation, respectively, and we did not find any difference,
whereas the presence of the forth-order difference term

V(q) 5 k2 S2
2

r 2 2
b
3

r 3D, a $ 0, b $ 0.in the l.h.s. of Eq. (23) is crucial.
The difference equations (23) and (24) can be integrated

and transformed to
We refer to the constants a and b as to the parameters of
the intrinsic anharmonicity.

s2(rn21 2 14rn11 1 rn11)/3 1 Pn 1 Qn 1 Qn11 5 0,
(25) We have numerically studied the zig-zag system in both

cases: (i) without any intrinsic anharmonicity, when the4s2(vn11 2 2vn 1 vn21) 1 Sn21 1 Sn 1 Tn21 2 Tn11 5 0.
molecules are assumed to be coupled harmonically (a 5
b 5 0), and (ii) with this type of anharmonicity, when, atThese equations correspond to the Lagrangian function
least, the parameter b is positive. In the former case, we
have chosen the zig-zag geometry with h 5 0.1 by takingL 5 Lhrn, vnj 5 O

n
h2s2 [r2

n 1 asA (rn11 2 rn)2

(26) k1 5 k2 5 1. The numerical minimization of the function
1 (vn11 2 vn)2] 2U(rn) 2 V(qn)j. (27) has shown that the system has a soliton solution which

corresponds to localized stretching deformation of the
chain. This solution has been proved to exist only at oneThe extremum conditions ­ L/­rn 5 0 and ­L/­vn 5 0 give

immediately the system of the difference equations (25). value of the velocity s 5 s1 5 1.10259. We refer to this
solitary wave solution as to the stretching soliton. As is wellHowever, the extremum points of the Lagrangian function

(26), which correspond to soliton solutions, are not neces- known, there are no stable localized solutions describing
stretching deformations in a 1D anharmonic chain. How-sary to be minima or maxima. They might be saddle points

as well. For instance, for the 1D Boussinesq equation, ever, the cases of preferential (distinguished) single values
for the soliton velocity are known for other nonlinear sys-there are neither minimum nor maximum points at the

corresponding Lagrangian surface. In this case, the extre- tems. Thus, Peyrard and Kruskal [7] have found a distin-
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guished velocity for the propagation of the 4f-kink in the
1D discrete FK lattice. The existence of this single value
is explained by the resonance interaction of two 2f-kinks
from which the 4f-kink is actually formed. In the presence
of the Peierls–Nabarro relief, such as interaction can be
realized. In our case, the chain is isolated and the existence
of the preferential velocity s1 is caused by the specific
geometry of the system. Indeed, for this solution the ampli-
tude of the transverse displacements exceeds the zig-zag
thickness h, so that in the vicinity of the soliton center,
the upper and lower chains of the zig-zag backbone become
rearranged. In other words, the chains ‘‘pass’’ through each
other at the soliton center. As a result, the longitudinal
displacements appear to be under the topological restric-
tions caused by such an ‘‘overslendering’’ of the transverse
displacements, resulting in both the stretching of the longi-
tudinal displacements and the appearance of the single
value of the velocity s 5 s1. The minima at other values
of the velocity s ? s1 do not provide pure bell-shaped
soliton profiles; as a rule, they give profiles with ripples.
The accuracy of the solution was reached up to 10210.

The dynamics of the soliton solutions has been studied
numerically in the zig-zag chain consisting of N 5 300
molecules, with the free ends. The accuracy of integration
of Eqs. (19) and (20) was estimated through the conserva-
tion of the total energy of the system. Initially, the soliton
was situated at the site n 5 100. After the passage of 100
sites, the fields rn(t) and hn(t) were replaced by rn2100(t)

FIG. 9. The two-component soliton profiles described by the longitu-and hn2100(t), respectively. The similar substitution was
dinal (un) and transverse (vn) displacements in the case of stretchngalso accomplished with the time derivatives of these fields.
deformation of the isolated chain with the parameter values h 5 0.1,

This procedure allows us to cut off nonsoliton contribu- k1 5 k2 5 1, and a 5 b 5 0. The initial profile (at t 5 0) has been found
tions appearing due to emission of small-amplitude waves. by the minimization of the function (27) and it is represented by squares.

The final profile (solid lines) is a result of the time evolution of thisThese waves show up because the initial profiles obtained
profile when the soliton has passed 100000 chain sites (at t 5 45348.8).by the minimization procedure are only approximate, espe-

cially when they are narrow.
The numerical simulation of the equations of motion

(19) and (20) has proved the stability the stretching soliton. small-amplitude waves which results in gradual breaking
and final destroying the soliton.Thus, it was shown that starting with the initial velocity

s 5 s1, the soliton propagation with the final velocity s 5 The effects of interaction of the stretching solitons have
also been investigated by numerical simulations. To thiss2 5 1.10257 was extremely stable as illustrated by Fig. 9.

Thus, after the soliton passed 100000 lattice sites, during end, we have simulated their head-on collision. This colli-
sion leads to the appearance of transverse vibrations ofthe time t 5 45348.8, its velocity s 5 s2 and two-component

profile (plotted in Fig. 9 by the solid lines) were not the chain molecules. The results of these simulations show
that the stretching solitons are sensitive with respect tochanged. As illustrated in this figure, the initial profile

found by the minimization scheme completely coincides their mutual collisions resulting in the emission of trans-
verse oscillations.with the final profile obtained as a result of the numerical

simulation of Eqs. (19) and (20). For other velocities s ? The minimization procedure has proved the existence
of the second type of soliton solutions which describes as2, either the soliton motion is stabilized with the velocity

s 5 s2 leaving small-amplitude ripples or the soliton decays localized longitudinal compression of the zig-zag chain.
These solutions are of the conventional type that are wellinto a subsonic wave packet. Thus, the soliton propagation,

which starts with any velocity s . s2 is accompanied by known in a 1D anharmonic chain. However, in the case
of the zig-zag backbone, this type of solitons can existemission of small-amplitude waves and its velocity de-

creases approaching the value s 5 s2. At velocities s , s2, only in case the longitudinal anharmonicity (given by the
parameter b) is sufficiently strong. In order to find thesethe soliton motion is also accompanied by emission of
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the compression soliton is presented in Fig. 10. As demon-
strated here, in the region of the soliton, the longitudinal
compression and the transverse thickening take place.

Contrary to a 1D anharmonic chain, the velocity spec-
trum of the compression solitons in a zig-zag chain consists
of a narrow band in the supersonic region which turns out
to be bounded above. Thus, we have obtained the following
velocity bands: 1 , s/s0 , 1.16 if b 5 0.1 and 1 , b s/s0

, 1.03 if b 5 0.01. Here s0 5 Ïk2 is the velocity of the
longitudinal sound. Next, the numerical simulations have
also shown that the compression solitons are dynamically
stable for the anharmonicity parameter b 5 0.1. Thus, at
the initial velocity s 5 1.1s0 the soliton propagates along
100000 chain sites during the period t 5 143826.8. The
soliton was moving with the final velocity s 5 1.0993s0

retaining its profile. The solitons of this type have been
proved to interact elastically, as demonstrated by Fig. 11.

Thus, the numerical studies have proved that in an an-
harmonic zig-zag chain the existence of the compression
solitons depends on the magnitude of the anharmonicity
parameter. For each zig-zag chain there exists a threshold
value of this parameter, beginning from which the com-
pression solitons can exist. The solitons of this type have
always a finite interval of supersonic velocities. This band

FIG. 10. The two-component profiles of the compression soliton rep-
resented by the displacement fields un(t) and vn(t). The initial profile
(shown by squares) at t 5 0 has been found by the minimization procedure
while the final profile (solid lines) has been obtained as a result of the
time evolution of the initial profile when the soliton has passed 100000
chain sites (at t 5 143826.8). The final soliton velocity is s 5 1.0993s0.
The chain parameters are h 5 1/2Ï3, k1 5 1 and k2 5 0.1, a 5 0 and
b 5 0.1.

solutions numerically, we consider the most typical situa-
tion for molecular chains when the ratio k1/k2 is of one
order. For instance, in an alpha-helix protein the constant
k1 corresponds to hard deformations of the valence bonds
while the other constant k2 determines the soft vibrations
of the hydrogen bonds. Therefore, it is reasonable to con-
sider the anharmonicity only in the soft bonds because
they can have large amplitudes of the chain deformation.
Thus, we take a 5 0, b . 0, k1 5 1, k2 5 0.1, and h 5
1/2Ï3 (corresponding to the zig-zag angle 1208). Next, the
following three values of the parameter b were chosen for
numerical studies: b 5 0.1, b 5 0.01, and b 5 0.001. The
compression soliton solutions of the minimization problem
were shown to exist only in the former two cases. The
value b 5 0.001 is too small for the existence of this type
of soliton solutions. However, the stretching soliton does FIG. 11. Elastic head-in colission of the two compression solitons

moving with velocity s 5 1.1s0 in the chain with the same parameters.exist at this value. The typical two-component profile of
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enlarges with increasing the anharmonicity parameter b. idea of this method is the representation of a solution in
the form of a finite Fourier series, its substitution into theThe solitons loose their dynamical stability at the upper

edge of the band. Sufficiently below this value, the com- equations of motion, and then obtaining a set of nonlinear
equations with respect to the Fourier coefficients to bepression solitons are dynamically stable and they interact

as elastic particles. solved numerically. Clearly, in this approach, the dis-
creteness of a solution (i.e., its small width) is no more an
obstacle to get it (the narrower the soliton the longer the5. DISCUSSION AND CONCLUSIONS
Fourier series that should be taken). Of course, broad
solutions can also be obtained by the pseudo-spectralThe suggested numerical method for looking for solitary

wave solutions of stationary profile in discrete systems is method. However, its numerical realization results in cum-
bersome calculations and, therefore, its applicability is jus-based on the simple idea: as a permanent profile is as-

sumed, the solution un(t) has to be of the form u(n 2 st), tified to rather simple models for finding narrow solutions.
In our case, the simplicity of the steepest-descent proce-so that dun/dt 5 2su9(n 5 st), and then the latter (spatial)

derivative is discretized appropriately, depending on what dure makes it possible to be applied for numerical studies
of the nonlinear dynamics of molecular systems with com-kind (topological or nontopological) of solitary wave solu-

tions is expected to exist. Thus, to find subsonic topological plex 3D structure. Therefore, one can conclude that both
the minimization and pseudo-spectral methods are comple-soliton solutions, it is sufficient to accomplish the spatial

discretization in equations of motion up to second order, mentary to each other.
As for the physical examples chosen in this paper forwhile to get nontopological lattice solitons, formed by the

counterbalance of the dispersion owing to the lattice dis- the applications of the minimization method, one should
emphasize that it was an attractive point of view to studycreteness and anharmonic interatomic (intermolecular)

forces, it is necessary to involve the discretization scheme transport processes in biopolymers on the basis of 1D non-
linear lattice models with nearest-neighbor intermolecularalso in terms of the fourth order, chosen appropriately.

The numerical procedure of finding extremum points cor- interactions which admit propagation of extremely stable
supersonic pulses of longitudinal lattice compression. Thus,responding to soliton solutions is also chosen depending

on what kind of solutions is expected. Thus, to obtain a Yomosa [32] essentially applied the Fermi–Pasta–Ulam
model [2] for studies of energy transport in protein. How-topological soliton profile (in general, multicomponent),

it is sufficient to carry out the minimization of the corre- ever, in general, a biopolymer should be considered as a
3D object and, therefore, its dynamics has to include alsosponding discretized Lagrangian while in the case of the

nontopological lattice solitons, it is necessary to transform transverse degrees of freedom of the chain molecules, as
was suggested, for instance, in Refs. [12–16]. On the otherthe Lagrangian surface in such a way that its saddle points

would become minimum points. hand, when (i) the chain molecules are allowed to move
in transverse directions and (ii) all of the intermolecularThe proposed method allows us to seek only broad soli-

ton profiles because the spatial discretization of continuous forces in the chain are assumed to have the spherical sym-
metry, then some additional intermolecular forces, includ-time derivatives requires a smooth dependence of solutions

on the lattice site number. The method gives reliable results ing the next or more remote neighbors forming a secondary
structure, have to be taken into account in order to stabilizeif the width of solitary wave solutions exceeds 4–5 lattice

sites. In the class of smooth functions, one can find all a regular configuration of the chain in 3D space. In the
simplest case, such a configuration has naturally the formsoliton solutions and give the unique answer if they do not

exist at all. Thus, for instance, in our example of the isolated of a so-called 310-helix [12].
In this paper, we have simplified the helical structurezig-zag backbone, the existence of the soliton with stretch-

ing longitudinal deformation has been observed only with as much as possible by keeping the main features of the
secondary structure. More precisely, the simplification hasa single value of the soliton velocity. In the other case of

the zig-zag backbone subjected to the periodic substrate, been accomplished by (i) reducing one transverse coordi-
nate and (ii) taking into account (besides the nearest neigh-we have found a continuous subsonic spectrum (band) of

admissible velocities of the topological soliton. Clearly, the bors) only the second-neighbor intermolecular interac-
tions. Such an oversimplified ‘‘planar helix’’ is nothingmethod cannot give any indication on the reason for the

absence of soliton solutions and some physical considera- more than a 2D zig-zag chain in which the first- and second-
neighbor molecules are coupled by intermolecular interac-tions might be useful.

In the case of narrow soliton solutions, the discrete spa- tions. On the other hand, if such a planar chain is subjected
to a commensurate 2D substrate potential, the minima oftial discretization leads to big errors and for this class of

solutions the pseudo-spectral method, suggested by Eil- which coincide with the vertices of the zig-zag backbone,
then we obtain a modified version of the Braun–Kivsharbeck and Flesch [24] and further developed in Ref. [25],

to look for soliton solutions, should be applied. The main generalization [30] of the 1D Frenkel–Kontorova model
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[29]. Compared to the BK chain model, which seems to soliton motion which have previously been discovered in
Refs. [13, 16]. However, instead of this type of solitonsbe more specific with possible applications to the dynamics

of adsorbed atoms on crystal surfaces (due to the presence (localized longitudinal compression), a new stable soliton
solution which corresponds to longitudinal stretching andof only a repulsive interparticle interaction), our general-

ization of the FK model is more straightforward. Indeed, transverse slendering (illustrated by Fig. 9) has been found
numerically by using minimization techniques. This solitonwhen our 2D zig-zag chain is isolated from the planar

substrate, it still has a stable ground state, similar to the solution appears due to the geometric anharmonicity and
it exists for thin chains with week intrinsic anharmonicities1D FK chain, because both attractive and repulsive forces

are involved in the interparticle interactions. including also the case a 5 b 5 0. However, it should
be noticed that the soliton amplitude of the transverseIn order to find and treat pure two-component solitary

wave solutions, we have developed in the present paper a displacements, which are directed inside the zig-zag back-
bone, exceeds its thickness h. As a result of such transversesimple numerical scheme for both cases: n 5 0 (isolated

chain) and n . 0 (subjected to a periodic substrate). As ‘‘overslendering,’’ the transverse component of the soliton
profile has two nodes with a bulge between them whereshould be expected, the existence of transverse degrees of

freedom changes drastically the dynamics of the corre- the overslendering occurs. The second interesting feature
of this soliton solution is that there exists only one fixedsponding 1D chains. Thus, for the same parameter values,

the vacancy defects of both types (I- and II-kinks) have velocity at which its stable propagation happens. This value
of the soliton velocity has been found numerically.been shown to exist as sufficiently extended (broad) objects

which are able to propagate freely along the chain while
the defects with excess particles in the chain (I- and II- ACKNOWLEDGMENTS
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